• 0 Posts
  • 12 Comments
Joined 1 year ago
cake
Cake day: June 14th, 2023

help-circle
  • When I was still dual-booting Windows and Linux, I found that “raw disk” mode virtual machines worked wonders. I used VirtualBox, so you’d want a guide somewhat like this: https://superuser.com/questions/495025/use-physical-harddisk-in-virtual-box - other VM solutions are available, which don’t require you to accept an agreement with Oracle.

    Essentially, rather than setting aside a file on disk as your VM’s disk, you can set aside a whole existing disk. That can be a disk that already has Windows installed on it, it doesn’t erase what you have. Then you can start Windows in a VM and let it do its updates - since it can’t see the bootloader from within the VM, it can’t fuck it up. You can run any software that doesn’t have particularly high graphics requirement, too.

    I was also able to just “restart in Windows” if I wanted full performance for a game or something like that, but since Linux has gotten very good indeed at running games, that became less and less necessary until one day I just erased my Windows partition to recover the space.



  • Yes, because it doesn’t do as much to protect you from data corruption.

    If you have a use case where a barely-measurable increase in speed is essential, but not so essential that you wouldn’t just pay for more RAM to keep it in cache, and also it doesn’t matter if you get the wrong answer because you’ve not noticed the disk is failing, and you can afford to lose everything in the case of a power cut, then sure, use a legacy filesystem. Otherwise, use a modern one.




  • emerges from a brand you’ve probably never heard of

    Writing this on a Tuxedo Pulse 14 / gen 3 as we speak. Great little laptop. I’d wanted something with a few more pixels than my previous machine, and there’s a massive jump from bog-standard 1080p to extremely expensive 4K screens. Three megapixel screen at a premium-but-not-insane price, compiles code like a champion, makes an extremely competent job of 3D gaming, came with Linux and runs it all perfectly.

    “Tuxedo Linux”, which is their in-house distro, is Ubuntu + KDE Plasma. Seemed absolutely fine, although I replaced it with Arch btw since that’s more my style. Presumably they’re using Debian for the ARM support on this new one? This one runs pretty cold most of the time, but you definitely know that you’ve got a 54W processor in a very thin mobile device when you try eg. playing simulation games - it gets a bit warm on the knees. “Not x64” would be a deal-breaker for my work, but for most uses the added battery life would be more valuable than the inconvenience.




  • One of the things that got me to change my gaming desktop from Mint to Arch was the fact that you get the cutting-edge version of everything; kernel and amdgpu being the most important, but also getting the latest version of Lutris and things is nice too. Brought me from “usually about 50 fps outdoors in Elden Ring” to “usually about 60 fps” on the same machine.

    Makes sense for a gaming machine to only include the services you actually want, which Arch enables. Supports my hardware better too - my audio gear works perfectly in Pipewire but is ropey in ALSA, so rather than “install Mint -> install Pipewire -> remove ALSA -> hope ALSA is gone”, the sequence is “install Arch -> install Pipewire”, which make more sense.

    Other cutting-edge rolling release distros are available, of course, but once you learn Arch, it makes a lot of sense for gaming.


  • Yeah.

    There’s a couple of ways of looking at it; general purpose computers generally implement ‘soft’ real time functionality. It’s usually a requirement for music and video production; if you want to keep to a steady 60fps, then you need to update the screen and the audio buffer absolutely every 16 ms. To achieve that, the AV thread runs at a higher priority than any other thread. The real-time scheduler doesn’t let a lower-priority thread run until every higher-priority thread is finished. Normally that means worse performance overall, and in some cases can softlock the system - if the AV thread gets stuck in a loop, your computer won’t even respond to keyboard input.

    Soft real-time is appropriate for when no-one will die if a timeslot is missed. A video stutter won’t kill you. Hard real-time is for things like industrial control. If the anti-lock breaks in your car are meant to evaluate your wheels one hundred times a second, then taking 11 ms to evaluate that is a complete system failure, even if the answer is correct. Note that it doesn’t matter if it gets the right answer in 1 ms or 9 ms, as long as it never ever takes more than 10. Hard real-time performance does not mean good performance, it means predictable performance.

    When we program up PLCs in industrial settings, for our ‘critical sections’, we’ll processor interrupts, so that we know our code will absolutely run in time. We use specialised languages as well - no loops, no recursion - that don’t let you do things that can’t be checked for an upper time bound. Lots of finite state machines! But when we’re done, we know that we’ve got code that won’t miss a time slot in the next twenty years of operation.

    That does mean, ironically, that my old Amiga was a better music computer than my current desktop, despite being millions of times less powerful. OctaMED could take over the whole CPU whenever it liked. Whereas a modern desktop might always have to respond to a USB device or a hard drive, leading to a potential stutter at any time. Tiny probability, but not an acceptable one.