• 0 Posts
  • 7 Comments
Joined 2 years ago
cake
Cake day: June 9th, 2023

help-circle
  • Then you’d be surprised when you calculate the numbers!

    A Falcon 9 delivers 13100kg to LEO and has 395,700kg propellant in 1st stage and 92,670kg in 2nd stage. Propellant in both is LOX/RP-1. RP-1 is basically long chains of CH2, so together they burn as:

    3 O2 (3x32) + 2 CH2 (2x14) -> 2 CO2 (2x44) + 2 H2O (2x18)
    

    Which is 2*44/(2*44+2*18) = 71% CO2. Meaning each launch makes (395700+92670)*.71 = 347 tons CO2 or 347/13.1 = 26.5 tons of CO2 per ton to orbit. A lot of it is burned in space, but I’m guessing the exhaust gases don’t reach escape velocity so they all end up in the atmosphere anyway.

    As for how much a compute satellite weighs, there is a wider range of possibilities, since they don’t exist yet. This is China launching a test version of one, but it’s not yet an artifact optimized for compute per watt per kilogram that we’d imagine a supercomputer to be.

    I like to imagine something like a gaming PC strapped to a portable solar panel, a true cubesat :). On online shopping I currently see a fancy gaming PC at 12.7kg with 650W, and a 600W solar panel at 12.5kg. Strap them together with duct tape, and it’s 1000/(12.7+12.5)*600 = 24kW of compute power per ton to orbit.

    Something more real life is the ISS support truss. STS-119 delivered and installed S6 truss on the ISS. The 14,088kg payload included solar panels, batteries, and truss superstructure, supplying last 25% of station’s power, or 30kW. Say, double that to strap server-grade hardware and cooling on it. That’s 1000*30/(2*14088) = 1.1kW of compute per ton to orbit. A 500kg 1kW server is overkilling it, but we are being conservative here.

    In my past post I’ve calculated that fossil fuel electricity on Earth makes 296g CO2 per 1 kilowatthour (using gas turbine at 60% efficiency burning 891kJ/mol methane into 1 mol CO2: 1kJ/s * 3600s / 0.6 eff / (891kJ/mol) * 44g/mol = 296g, as is the case where I live).

    The CO2 payback time for a ton of duct taped gamer PC is 1000kg * 26.5kg CO2/kg / ( 24kW * 0.296kg/kW/hour) / (24*365) = 0.43 years. The CO2 payback time for a steel truss monstrosity is `1000kg * 26.5kg/kg / (1.1kW * 0.296kg/kW/hour) / (24*365) = 9.3 years.

    Hey, I was pretty close!





  • PostUp = ip route add 100.64.0.0/10 dev tailscale0
    

    Looks like you need to stick this line in the tailscale service file, since it’s the only time that the existence of the tailscale0 device is guaranteed. If you don’t want to modify the service file inside the package, could you write your own systemd service file and include the tailscale service as a prerequisite?

    Also make sure that when you start the VPN first and then tailscale, you don’t get a double tunnel situation where tailscale goes out through the VPN (unless that’s what you wanted).